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Abstract. The Peierls phase transition in the quasi-one-dimensional conductor(TaSe4)2I is
investigated by means of elastic and inelastic neutron scattering. The effective critical exponent
β, extracted from the temperature dependence of the integrated intensity from the CDW satellite
reflections, is anomalously low, suggesting that the phase transition may be of first order. The
intensity distribution among symmetry-related satellite reflections indicates a domain structure
with slowly fluctuating domain populations. Correlation lengths associated with the diverging
‘central peak’ are determined and are found to be nearly isotropic, at variance with results
obtained on other quasi-one-dimensional compounds, such as platinum chains (KCP) or blue
bronze, K0.3MoO3. Doping with 1.2% Nb has a severe effect on the modulated state. The low-
temperature satellites are replaced by a diffuse scattering distribution elongated alongc∗. The
absence of a phonon soft mode and the presence of a diverging central peak at the phase transition
is interpreted within the framework of strong electron–phonon coupling. Finally, we propose
a Ginzburg–Landau phenomenological model, where the interplay between the electronically
coupled optical-like order parameter (Ta-atom tetramerization along the chain axis) and the
elastic deformations lies at the origin of the phase transition in(TaSe4)2I.

1. Introduction

Quasi-one-dimensional conductors [1] are unstable under electronic fluctuations which open
up gaps on the conduction electron Fermi surface. The result of the electron–lattice inter-
action is the formation of a charge-density wave (CDW) coupled to a periodic lattice
modulation of wavevectorqs = 2kF, wherekF is the conduction band Fermi wavevector.

The quantum description of the CDW instability involves the condensation of electron–
hole pairs with total momentum±2kF. The CDW itself can be viewed as resulting from
the interference between the right-going (+2kF) and left-going (−2kF) condensates [2]. In
a weak electron–phonon coupling description, the electronic gap 21(T ) and the mean-field
transition temperatureT MF

P are related through

21(0) = 3.52kBT
MF

P .
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Experimentally, the ratio between the low-temperature electronic gap and the actual
3D Peierls transition temperatureTP is often found to be much larger than predicted by
the above BCS-type relation. This discrepancy is ascribed to the renormalization of the
transition temperature (TP < T MF

P ) arising from the weak interchain interactions and the
large-amplitude 1D fluctuations aboveTP [3].

An alternative strong-coupling description has been proposed by Aubryet al [4, 5]. For
a large enough electron–phonon interaction strength, the electrons become pairwise localized
in real space, in what Aubry and co-workers have defined as a dense bipolaronic state. In
this latter picture,TP corresponds to the ordering temperature of the bipolaron fluid, while
the gap energy 21 corresponds to the binding energy of a single bipolaron. AsTP is of the
order of magnitude of the residual (repulsive) interaction energy between bipolarons, one
naturally expects to findTP� 21/kB.

Hence, the validity of the weak-coupling model rests heavily on the assumption of a
large ratio between intrachain and interchain interaction energies. The relevant interactions
are elastic as much as electronic, as the Peierls instability involves a combined lattice
distortion and electronic charge ordering. The anisotropy of the electrical resistivity in the
metallic state only reflects the anisotropy of the electronic mean free path and does not
provide a proper estimate for the expected anisotropy of the pre-transitional fluctuations.

Direct information on theq-dependent order parameter susceptibility and correlation
lengths aboveTP can be deduced from diffuse x-ray scattering data. Such measurements
have been performed on a few CDW compounds, such as NbSe3 and K0.3MoO3 (for a
review of recent work, see [6]). The case of K0.3MoO3 is probably the best documented.
Gap measurements, analysed in the weak-coupling framework, suggest a ratioT MF

P /TP

of the order of 2 to 3, depending upon the source [7, 8]. On the other hand, x-ray
measurements [9, 10] betweenTP = 180 K and room temperature indicate that the ratio
of the in-chain (ξ‖) to the largest transverse (ξ⊥) correlation length is only a factor of 4. In
fact the shortest transverse correlation length is always found to be larger than the relevant
interchain distance, so the 1D-fluctuation regime is not observed in that case. Hence, the
relevance of weak-coupling theory in the case of K0.3MoO3 is not firmly established, exp-
erimentally.

In other quasi-1D CDW systems the situation is less clear due to uncertainty in the
value of the gap or due to the absence of direct correlation-length measurements. In 2D
CDW systems such as 2H-TaSe2, with 21(0)/kBTP = 28, it seems clear that weak-coupling
theory is no longer applicable [11].

The present work deals with the compound (TaSe4)2I, which undergoes a Peierls
transition near 260 K and for which low-temperature resistivity data [12, 13] and optical
data [14] indicate a gap energy of 21(0) ≈ 3000 K= 11.5 kBTP. X-ray results obtained
by Fujishita et al [15] on (TaSe4)2I and on the related compound (NbSe4)2I, indicate a
low correlation-length anisotropy ratio (1< ξ‖/ξ⊥ < 2). However, the accuracy of the
x-ray measurements in [15] suffers from resolution limitations and from contamination by
non-critical scattering.

In this paper, we show how inelastic neutron scattering can be used to explore the energy
scale of the critical fluctuations and to discriminate against non-critical scattering. Over a
large temperature range aboveTP, the energy scale of the critical fluctuations is narrow
enough (a ‘central peak’) for the correlation lengths to be measurable by elastic three-axis
spectrometry. We present neutron scattering results which confirm the low anisotropy of
the critical fluctuations (section 3). We suggest that strong interchain interactions arise in
this compound due to the long-wavelength acoustic character of the atomic displacements
involved in the Peierls distortion.
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Section 4 deals with the low-frequency inelastic response (10 GHz–2 THz). We
first present room temperature results on acoustic branches propagating along symmetry
directions. These results extend previous ultrasonic measurements [16] and provide an
overall picture of the acoustic response of (TaSe4)2I. Second, we focus on the temperature
dependence, above and belowTP, of the transverse acoustic phonon branch connected to the
Peierls transition around the satellite wavevector,qs. We observe a very limited softening
of the acoustic mode at the satellite position (a Kohn anomaly) contrary to what would be
expected in a weak-coupling picture.

In section 5 we discuss the above experimental results within the framework of Aubry’s
strong electron–phonon coupling [4, 5] model. We note that the Peierls transition in
(TaSe4)2I appears to be of a more complex nature than in other quasi-1D CDW compounds,
such as K0.3MoO3. In particular, the sensitivity of the modulation wavevector components
to dilute isoelectronic doping makes it difficult to visualize the phase transition in (TaSe4)2I
as originating purely from Fermi surface effects. This leads us to propose, in section 6, a
phenomenological Landau–Ginzburg free energy, based on an optical-like order parameter
(Ta-atom tetramerization) interacting with the acoustic degrees of freedom. The model
is then shown to account for the strong transverse acoustic character of the atomic
displacements and for the finite values of the in-plane and in-chain CDW wavevector
components.

2. Electronic structure of (TaSe4)2I

(TaSe4)2I belongs to the family of transition metal tetraselenides (MSe4)nI with M = Ta, Nb
andn = 2, 3, 10/3. The crystal structure of these compounds consists in an arrangement [17]
of strongly bonded (MSe4)∞ chains parallel to the tetragonalc-axis, separated by strands
of iodine ions (cf. figure 1). In each chain, M atoms and Se4 rectangles alternate, the
latter following a nearly regular screw arrangement alongc with an angle of approximately
45◦ between consecutive rectangles. Within the rectangles the shortest Se–Se distance
corresponds to that of a Se2−

2 dimer. The crystallographic space group in the undistorted
metallic state isI422 with lattice parametersa = 9.531 Å and c = 12.824 Å. The body-
centred unit cell contains two adjacent chains with four (TaSe4) units in each chain.

The Peierls transition temperature, as obtained from diffraction and resistivity data
[12, 13], varies between 240 K and 265 K, depending on the sample. The low-tempe-
rature electrical response shows non-linear effects characteristic of a CDW ground state
[12, 13]. X-ray [15] and electron diffraction [18] experiments reveal the formation of an
incommensurate distortion belowTP, with a modulation wavevectorqs = (±η, ±η, ±δ)
with η = 0.045 andδ = 0.085 for (TaSe4)2I and η = 0.065 andδ = 0.159 for the
isomorphous compound (NbSe4)2I (TP = 210 K) [15].

These two compounds are the only ones in the (MSe4)nI family to exhibit a unique
metal–metal distance (d = 3.206 Å) in the high-temperature phase. Consecutive Ta atoms
along a chain occupy two alternating slightly non-equivalent sites [17]. XPS measurements
[19] distinguish between the two Ta lattice sites while UPS [20] experiments do not. From
ionicity considerations, assuming an I− state for the iodine ions, the two Ta sites formally
correspond to Ta4+ and Ta5+ valence states, with one conduction electron per formula
unit. This picture is confirmed by Hall effect [21] and thermopower measurements [22]
and by band-structure calculations [23] which suggest a single quarter-filled dz2 electronic
band at the Fermi level. Optical data provide evidence for the strong anisotropy in the
conductivity (σ‖/σ⊥ ≈ 500) between the directions parallel and perpendicular to the chain
axis [24].
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(a)

(b)

Figure 1. The structure of (TaSe4)2I: (a) the projection along [110]; (b) the projection along
[001].
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The star of the modulation wavevector{qs} spans eight vectors [15, 25]. Performing a
detailed analysis of the modulated structure would be difficult because of the large high-
temperature unit cell and because of many domain structures possible belowTP. It has not
been attempted so far. The satellite extinction rules observed by Fujishitaet al [15] imply
that the atomic displacements are transverse acoustic-like and predominantly polarized in
the basal plane (i.e. along [1̄1 0] for qs = (η, η, δ)). A rough fit of selected high-intensity
satellites at low temperature [25] shows that the average transverse (in-plane) displacements
are four times larger than in the chain direction and are among the largest observed for a
CDW system (≈0.087Å).

Previous inelastic neutron scattering measurements [26, 27] found a spoon-like anomaly
on the dispersion curve of the TA branch propagating alongqs and predominantly polarized
along [1 1̄ 0]. Note that, sinceqs lies along a general direction in reciprocal space, the
mode polarizations and the components ofqs are not fixed by symmetry. However, the
fact that the basal-plane components of the modulation wavevector are found to be identical
must be connected with a symmetry argument: this is the 2xȳ symmetry operation of the
space groupI422 which, independently of time-reversal symmetry, transformsqs into −qs.
Under this condition the group of the wavevectorqs is monoclinic 2. We shall return to
this point in section 6.

The small value of the modulation wavevector can be understood on the basis of
band-structure arguments. The quarter-filled conduction band leads to a Fermi wavevector
(1/4)(2π/d) = c∗, whered = c/4 is the Ta–Ta distance along the chain. Assuming in
addition an antiphase arrangement of the CDWs on adjacent chains, one arrives at possible
qs-values of±a∗ ± c∗ or ±b∗ ± c∗, which are equivalent toqs = 0, modulo a body-
centred-tetragonal reciprocal-lattice vector. The observed departure ofqs from the Brillouin
zone centre may arise from band-structure effects [23] or from a wavevector-dependent
coupling between phonon branches. Since it is difficult to understand why electron–phonon
interactions should directly affect a long-wavelength transverse acoustic mode. Therefore,
Sugaiet al [28] have developed a phenomenological model in which the phase transition is
brought about by the interaction between the acoustic branch and a transverse optical mode
coupled to the electronic variables. However, our inelastic neutron scattering measurements
[29] have failed to show any evidence for an unstable optical branch below 2 THz.

Correlation lengths are usually obtained from theq-dependence of the frequency-
integrated fluctuation spectrum. Our inelastic neutron scattering results on the critical
fluctuation spectrum in (TaSe4)2I will be presented in section 5 below. We shall see that the
TA mode propagating alongqs and polarized along [1̄1 0] shows a rather limited softening
asT → TP. Its dispersiondoes notshow a local minimum atq = qs, at any temperature.
The main temperature-dependent effect is the growth of a central component whose energy
width is resolution limited (<10 GHz). The intensity of the central component is found to
be at its maximum atq = qs, whereas the frequency-integrated intensity of the TA phonon
increases continuously asq → 0. The sum of the two contributions may or may not go
through a maximum at a finite wavevector, depending upon the relative weight of the two
contributions. Itwill , in the limit T → TP, because the central component dominates. In
such a situation it is not clear whether the TA response should be included or not as a part of
the critical fluctuation spectrum. In the following, we make the practical choice of using the
central componentalone. This choice affects our results more severely at high temperatures
than in the limit T → TP. In addition, the fact that the anisotropy of the correlations
which we deduce from the present measurements is found to be approximately temperature
independent, as expected on theoretical grounds, confirmsa posteriori the validity of our
approach.
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3. Elastic scattering experiments: satellite reflections and diffuse scattering

Experiments were carried out on the 4F1, 4F2 and IN12 cold-source three-axis spectrometers
installed, respectively, at the Laboratoire Léon Brillouin, Saclay (France) and at the Institut
Laue–Langevin, Grenoble (France). For most measurements we used a 5 meV incident-
neutron energy (ki = 1.55 Å−1 or λ = 4.05 Å) and tight collimations (25′–25′–20′–20′) in
order to optimize the instrumentalq-space resolution.

Figure 2. A sketch in reciprocal space of the CDW satellite positions near the (2 2 4) Bragg
peak. The shaded plane corresponds to the (h h l) scattering plane. The strong satellites are
shown as closed symbols (A, A′, C and C′) and lie outside the scattering plane. They are brought
into reflecting positions by tilt adjustments of the sample mount. The chequered symbols (B,
B′, D and D′) represent nearly extinct satellites which lie in the scattering plane.

A rod-shaped 4× 4 × 20 mm3 specimen, mounted in a closed-cycle refrigerator,
was oriented so as to have an (h h l) horizontal scattering zone, as represented by the
shaded plane in figure 2. Satellite reflections and diffuse intensities located near the
(2 2 4) fundamental Bragg reflection were monitored. Among the eight satellite peaks
at (2± η, 2± η, 4± δ), the set of four which are located in the (h h l) scattering plane are
essentially extinct because the corresponding atomic displacements are along the normal
to the scattering plane. The four which are active are indexed as (2+ η, 2 − η, 4 ± δ)
and (2− η, 2+ η, 4± δ). They were brought into reflecting positions by means of small
goniometer tilt adjustments.
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(a)

(b)

Figure 3. (a) The temperature variation of the CDW satellite intensity at (2− η, 2+ η, 4+ δ)
(full circles) and (2+ η, 2− η, 4+ δ) (open circles). The transition temperature is located at
253 K as shown in the inset. (b) The long-term drift of the transition temperature: the sample
in its virgin state (closed circles),TP1 = 253 K; the same, two years later, after several cooling
and heating cycles (open circles),TP2 = 241 K. The intensities are normalized to the value
at 150 K.

All three components of the instrumentalq-resolution had to be controlled simult-
aneously. The final trade-off between intensity and resolution yielded the following
instrumentalq-widths (fwhm): 1q‖(110) = 0.008 Å−1; 1q‖(001) = 0.0105 Å−1; 1q‖(11̄0)

(=1qvertical) = 0.04 Å−1. The above values have been deduced from scans across the
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Figure 4. A log–log plot of CDW satellite intensities in (TaSe4)2I: the circular symbols refer to
the same data as in figure 3(a) and the triangles refer to those of figure 3(b). Changes in transition
temperature are not correlated with changes in the critical exponent 2β (Isat(T ) ≈ (TP− T )2β ).

(2 2 4) reflection and therefore include the effect of sample mosaicity.
In figure 3(a) we present the temperature evolution of the intensity of the satellites

located atG224+ q1 = (2+ η, 2− η, 4+ δ) (satellite A in figure 2) andG224+ q2 =
(2−η, 2+η, 4+ δ) (satellite C in figure 2). The transition temperature, as determined from
the position of the inflexion point of the curve, is found atTP = 253 K. The intensity tail
aboveTP is associated with the critical central peak (see section 4).

The scattering vectors for the two satellites in figure 3(a) are related through a symmetry
operation of the 422 point group:

2x,ȳ{G224+ q1} = −{G224+ q2}.
Hence, the intensity ratio of the two satellites gives information on the nature of the

modulated state. In particular, the two satellite intensities are expected to be equal if the
modulated structure consists in a ‘4q’-state or a ‘2q’-state involving a coherent superposition
of q1- andq2-waves. The fact that a systematic intensity difference is observed shows that
the modulated structure involves either a ‘single-q’ state, or a ‘2q’-state whereq1 andq2

belong to distinct domains. The presence of domains with slowly relaxing populations gives
rise to long equilibration times at low temperatures. Below 180 K, after each temperature
step, the intensities of the two satellites were found to fluctuate and relax on a timescale
much longer than the timescale of the measurements (five minutes per scan).

The two runs shown in figure 3(b) refer to the same specimen as above. They were taken
before and after an interval of two years during which the specimen was submitted to several
cooling and heating cycles. The transition temperature is seen to be shifted downward by
about 10 K in the latter run. The temperature variation of the satellite intensity is however
unchanged, as illustrated in figure 4, and so is the satellite position. It has been argued
that differences inTP-values could reflect small deviations from stoichiometry, such as arise
from iodine loss. In such a case, one would expect the change in the value ofTP to be
correlated with a change in the conduction electron Fermi wavevector, and eventually in
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Figure 5. The diffuse scattering profile for (Ta1−xNbxSe4)2I, x = 1.2%.

the satellite position. No such correlation is observed here.
Fitting the integrated satellite intensity to a power law(TP − T )2β yields a value for

the critical exponentβ of 0.19± 0.01, which is even smaller than the classical value at the
tricritical point (β = 0.25), and might indicate that the phase transition is of the first-order
type. As was first pointed out by Brezinet al [30] and later considered further by Mukamel
and Krinsky [31], the anisotropy of the order parameter interactions (i.e. the anisotropy of
the fourth- and higher-order terms in the free energy) may affect the critical behaviour for
an order parameter withn > 4 components. The presence of a number of components
n > 4 makes all fixed points unstable with respect to any anisotropy of the fourth-order
free-energy terms and hence one expects the transition to be discontinuous. As in (TaSe4)2I
the star of the modulation spans eightq-positions, such an argument is applicable here,
although no jump in the integrated satellite intensity has been detected atTP. Very recent
x-ray measurements of the critical exponents of (TaSe4)2I by Requardtet al [32] have
confirmed the low value of the effective critical exponentβ. These authors also suggest
that order parameter fluctuations might lie at the origin of the smallβ-value. We interpret
the apparent continuous character of the phase transition as due to blurring by defects and
impurities. This view is supported by the large scatter in the observed values ofTP, as
shown in figure 3(b).

In what follows we investigate further the effect of impurities by introducing a low
concentration of Nb ions substituting for Ta. A batch of Nb-doped samples was prepared
by a standard temperature-gradient furnace technique. The nominal Nb concentration was
1.2%. However, chemical analysis performed on several single crystals from the same batch
(typical sample size: 5× 5× 5 mm3) showed considerable scatter in the actual bulk Nb
content.

The doped sample, studied under similar experimental conditions to those described
above, did not produce evidence for low-temperature satellite reflections. Figure 5 shows
scans taken atT = 12.5 K alonga∗ −b∗, centred around (2, 2, 4+q), for several values of
q. The remnants of the two satellite reflections at (2+η, 2−η, 4+δ) and (2−η, 2+η, 4+δ)
now appear as a weak double-peaked intensity distribution centred onη = ±0.020. Along
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Figure 6. Transverse scans along thea∗ + b∗ direction in pure (TaSe4)2I (closed circles) and
in the 1.2%-Nb-doped compound (open circles) at 12.5 K. Both scans have been normalized to
the peak intensity of the (4−2 0) Bragg reflection. The experimental conditions are described
in the text.

c∗, the diffuse intensity is no longer centred on a finite value ofq (=δ = 0.085). Instead,
it increases steadily with decreasingq-value. Scans withq-value lower than 0.05c∗ were
not attempted because of possible contamination by the (2 2 4) Bragg reflection.

In figure 6, the intensity distributions for a pure and a Nb-doped sample are compared,
using the 4F2 spectrometer operated at an incident-neutron wavevector ofki = 1.97 Å−1,
and under somewhat relaxed resolution conditions. The sample was oriented so as to have an
(h k 0) horizontal scattering plane and the measurements were performed near the(4−2 0)
Bragg reflection. Theq-resolution (fwhm) is 0.02Å−1 in the plane and 0.12̊A−1 along
the vertical [0 0 1] direction. With this purposely relaxed vertical resolution, the satellites
at (4+ η,−2+ η,±δ), symmetrically located above and below the horizontal scattering
plane, are measured simultaneously in a (4+ ξ,−2+ ξ, 0) scan. For the undoped sample
(closed circles in figure 6), the three peaks observed correspond to the (4− η,−2− η,±δ)
satellites, the (4−2 0) fundamental peak and the (4+ η,−2+ η,±δ) satellites (from left
to right in the figure;η = 0.05). The same scan of a doped sample (open circles) only
shows wings on both sides of the (4−2 0) Bragg peak. These wings correspond to diffuse
intensity with a finite extension alongc∗, integrated by the broad vertical resolution of the
instrument.

The compounded results shown in figures 5 and 6 suggest that the diffuse intensity
in the doped samples is localized around reciprocal-lattice positions of the type (h ±
0.02, k ± 0.02, 0). The temperature dependence of this intensity, as obtained from figure 6
by integrating across the wings of the distribution, is shown in figure 7 (open symbols).
The integrated diffuse intensity shows a much smoother behaviour than the pure-sample
satellite intensity (closed symbols). This behaviour appears consistent with resistivity data
on similar Nb-doped samples [16], which suggest a diffuse transition at around 200 K.

A detailed and systematic x-ray and neutron scattering study of the incommensurate
modulation in the Nb-doped compounds is being currently carried out. Preliminary high-
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Figure 7. The temperature variation of the CDW satellite intensity in pure (TaSe4)2I (closed
symbols) compared with the integrated diffuse intensity in thex = 1.2%-Nb-doped compound
(open symbols). The data are normalized to their values at low temperatures. The inset shows
the satellite intensity normalized to the peak intensity of the (4−2 0) Bragg reflection.

resolution x-ray data [33] on a 1.2% Nb sample show a well defined modulation wavevector
with componentsqs = (0.0322, 0.0322, 0.0388), though the peak widths are twice as broad
as the instrumental resolution. These results do not contradict those presented above, as
the actual amount of Nb in each sample and its degree of homogeneity are not precisely
known. The above data confirm the enormous influence of doping on the nature of the low-
temperature modulated state. This result is particularly striking in view of the isoelectronic
nature of the Nb–Ta substitution.

For pure (TaSe4)2I aboveTP, we performed elastic (ω = 0) scans through the critical
scattering distribution centred at (2+ η, 2 − η, 4 + δ) along three orthogonal directions,
a∗ + b∗, a∗ − b∗ and c∗. The scans were corrected for resolution broadening using a
standard one-dimensional deconvolution technique. In figures 8(a) and 8(b) we show two
typical scans taken at 263 K (TP = 241 K) with the corresponding Lorentzian fits (full line)
convoluted with the Gaussian resolution profile (broken line).

The results for the inverse correlation lengths obtained along the three directionsc∗,
a∗ + b∗, a∗ − b∗ are plotted in figure 9 as a function of temperature. The differentξ−1-
values vary as([T − TP]/TP)

ν with ν = 0.5. The anisotropy parameter, given by the
ratio ξc∗/ξa∗±b∗ , is very small: 1.8± 0.2. It is consistent with the anisotropy ratio of 1.5
measured by Fujishitaet al [34], for the isomorphous compound (NbSe4)2I, by means of
x-ray scattering, but is at variance with that typically found for other quasi-one-dimensional
conductors: for NbSe3 and K0.3MoO3, which have two different transverse correlation
lengths, the anisotropy ratios amount to 7 and 13, and 4 and 7.5, respectively [34]. From
our data shown in figure 9, we find that at 40 K aboveTP the transverse correlation length
is of the order of 100Å. The average number of correlated chains can be estimated at
(100/(a/

√
2))2 ∼ 200. This clearly reflects the broad temperature extension aboveTP of

the 3D-fluctuation regime.
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(a)

(b)

Figure 8. (a) A scan through the critical scattering distribution, along thea∗ + b∗ direction.
The full line represents the result of a Lorentzian 1/[1+ (qξ)2] fit and the broken line represents
the Gaussian instrumental resolution profile along thea∗ + b∗ direction. (b) As (a), but along
the c∗-direction (T = 263 K; TP = 241 K).

4. Inelastic neutron scattering experiments

Low-frequency measurements (ω < 0.5 THz) were performed on the cold-neutron three-axis
spectrometers 4F1 and 4F2 at LLB, and IN12 and IN14 at ILL. A number of incoming-
neutron wavevector values were used (ki = 1.1, 1.4, 1.55, 1.64 and 2.0̊A−1) according
to the energy-and momentum-transfer requirements. Higher-order neutrons were removed
using a beryllium filter (ki = 1.1, 1.4, 1.55Å−1) or a graphite filter (ki = 1.64 Å−1) or by
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Figure 9. The temperature variation of the Lorentzian halfwidths (the inverses of the correl-
ation lengths) of the critical scattering around (2+ η, 2− η, 4+ δ) along the three directionsc∗,
a∗ + b∗, a∗ − b∗ (TP = 241 K). The full lines represent power-law fits, [(T − TP)/TP]ν , with
ν = 0.5.

the natural cut-off of the curved neutron guide (ki = 2 Å−1 on IN12). The thermal beam
three-axis spectrometers IN3 and IN8 at ILL were used for inelastic experiments at energy
transfers aboveω > 0.5 THz (ki or kF = 2.662 Å−1).

All of the results presented below correspond to measurements on a nominally
pure sample of (TaSe4)2I, the same sample as the elastic measurements were made on.
Preliminary results on the Nb-doped compounds do not show any significant differences,
within the limits of experimental accuracy.

4.1. Acoustic branches

In figure 10 we present the room temperature phonon dispersion curves measured along
high-symmetry directions. The extrapolated sound velocities are in fair agreement with
ultrasonic data [16, 35]. In what follows we summarize the characteristic features of the
acoustic dispersions in (TaSe4)2I.

(i) The transverse acoustic branch propagating along thec∗-direction, whose sound
velocity is given byv44 = (C44/ρ)

1/2, follows a dispersion law of the type

ω2(q) = v2
44q

2+ C2q4 (1)

with C denoting a chain-bending force constant (v44 = 450 m s−1 = 0.71 THz Å and
C = 5.24 THz Å2). The same kind of behaviour is found for the related compound
(NbSe4)3I at room temperature [36] (v44 = 140 m s−1 = 0.22 THzÅ andC = 8.19 THzÅ2).
A similar type of dispersion law is also found for polymer crystals [37] and for layered
systems, such as graphite [38], reflecting the one- or two-dimensional bonding anisotropy
inherent to these structures. The quasi-one-dimensional character of the (MSe4)nI structure
is apparent in the elastic properties of all of the compounds of the family, at least at high
temperature. It is related to the rigidity of the (MSe4)∞ backbone which in turn arises from
the directionality of the covalent M–Se bonds.
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Figure 10. Phonon dispersion curves along high-symmetry directions in (TaSe4)2I at room
temperature. Modes polarized along the chains (normal to the chains) are shown as closed
(open) circles. The sound velocities (solid lines) are taken from the ultrasonic data given in
reference [35].

(ii) The z-polarized transverse acoustic modes (TAz), propagating in the basal plane
[a∗, b∗], have the same sound velocityv44. In figure 11 we have plotted the measured
acoustic modes that havev44 as the sound velocity. The peculiarity of these modes is
that they are dispersionless over a large portion of the Brillouin zone, with an extremely
low frequency at the zone edge:≈0.20 THz (see figures 10 and 11). The low-frequency
plateau indicates that the (MSe4)∞ columns are relatively free to move along thec-direction,
independently of each other, due to the weak Se–I–Se interchain bonds.

The TAz frequency is soft for all wavevectors (qx, qy, qz) in the planeqz = 0. Its
dispersion as a function ofqz, for a fixed value of (qx, qy), is quite steep as illustrated in
figure 10, for the zone boundary Z point. We find

ω2(qx, qy, qz) ≈ ω2(qx, qy, 0)+ v2
‖q

2
z (2)

wherev‖ is very close to the longitudinal sound velocityv33 along the chain direction. We
have argued [39] that the flat and low-frequency TAz dispersion sheet lies at the origin of the
anomalous behaviour of the specific heat [40] and thermal conductivity [41] below 5 K. Such
a flat branch is also present in (NbSe4)3I at room temperature but it disappears progressively
asv44 increases below the 273 K ferrodistortive transition [36]. In figure 11 we also show
the TAz dispersion in thea∗ anda∗ + b∗ propagation directions for (Ta1−xNbxSe4)2I with
x = 1.2% (open symbols). There is no detectable difference between the transverse acoustic
mode dispersions for pure and doped crystals.

(iii) The topology of the optical branches is discussed in more detail in reference [29].
In figure 10, we see that the longitudinal acoustic branch alongc∗ anticrosses a flat mode
in the region of 1.1 THz andqz = 0.25–0.45c∗. By exploiting the symmetry compatibility
relations along this direction we conclude that the flat mode has a zone-centre symmetry of
A1 type (totally symmetric, and thus Raman active) or A2 type (odd with respect to both
sets of twofold axes normal to the chain axis, and infrared active inz-polarization). The



A neutron scattering study of (TaSe4)2I 5053

peculiarity of this mode is that it is only clearly visible in the region where it anticrosses
the LA mode. In thea∗ + b∗ direction it is hardly visible and its frequency remains
constant within experimental accuracy (±0.1 THz). Measurements made belowTP show
no detectable change in mode frequencies with temperature. In this frequency range, there
are no Raman-active modes [42] whereas far-infrared experiments detect a strong resonance
at 1.1 THz (36 cm−1) [43, 44]. A similar resonance has been detected in the blue bronze
K0.3MoO3 at 40 cm−1 (1.2 THz) [45] and interpreted as a bound collective mode arising
from the presence of polarizable impurities. This interpretation has however been questioned
by Creageret al [46].

4.2. The low-energy acoustic mode aroundq = qs

As discussed in sections 2 and 3, the satellite structure factor follows closely that of an
acoustic mode of wavevectorqs = (±η,±η,±δ) = (±0.045,±0.045,±0.085). The atomic
displacements involved in the modulation are predominantly transverse to the chain direction
and toqs. In figure 2 we illustrate the situation near an(h h l)-type Bragg reflection. The
four satellites lying in the scattering plane (shaded plane) are nearly extinct (B, B′, D and
D′), while the two pairs located above (A,A′) and below (C,C′) are intense.

The L point of coordinates (0, 0, 0.085), is located midway between the four satellites
(A,B,C,D). Along0–L the two TA branches are degenerate. Away from the0–L direction,
the two TA branches split. Figure 12 shows the measured dispersion curves along L→ D
(lhs) and along L→ A (rhs). In each case, only the [1 1 0]-polarized branch is visible.
In the direction of the extinct satellite the phonon branch goes up in frequency rapidly.
The soft polarization for this satellite wavevector is along [11̄ 0] and is not visible in the
experiment. In the direction of the strong satellite the phonon branch is softer and almost
flat between L and A.

Figure 11. Phonon dispersion curves for the acoustic branches havingv44 as their sound velocity
(room temperature). Closed (open) symbols correspond to pure (TaSe4)2I ((Ta1−xNbxSe4)2I,
x = 1.2%).
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Figure 12. TA phonon dispersion curves for pure (TaSe4)2I along the lines D→ L (left-hand
side) and L→ A (right-hand side); room temperature (see figure 2 for the positions of points
L, D, A).

The difference between the two TA branches shown in figure 12 illustrates the anomalous
character of the mode observed near the strong satellite. Note however that no dispersion
minimum is observed at the satellite position, contrary to what would be expected in a
standard soft-mode picture. This is consistent with the dispersion measurements along
0→ A, reported by Fujishitaet al [26], which reveal a spoon-like anomaly but no dispersion
minimum at the satellite position. This effect may be viewed as a weak Kohn anomaly or
as resulting from the interaction of the TA mode with an optical-mode Kohn anomaly [28].

In figures 13(a) and 13(b) we display the temperature dependence of the soft TA branch
at the L point and at the strong-satellite position, respectively. At the L point, the doubly
degenerate TA mode at 45± 10 GHz shows no measurable temperature variation between
300 K andTP = 253 K. Below TP, the spectra in figure 13(a) show a growing elastic
contamination, which arises from the A and C satellites broadened by finite verticalQ-
resolution (cf. figure 2). Otherwise, the inelastic line-shape is unchanged. The energy-
integrated inelastic intensity varies asT , as expected from the thermal population factor, and
the vertical scales for the scans in figures 13(a) and 13(b) have been normalized accordingly.

A somewhat different behaviour is observed in figure 13(b), for constant-Q scans at
satellite position A. The elastic component corresponds to the satellite intensity at low
temperatures, and to the central peak aboveTP. The inelastic response shows some softening
asT → TP, as well as an increase in phonon damping. BelowTP, the spectra can be fitted
assuming a single-oscillator response, as aboveTP.

The spectra in figure 13(b) have been analysed using a damped harmonic oscillator
response function, convoluted with the instrumental energy resolution (25 GHz fwhm). The
results of the analysis are plotted in figure 14. The phonon energy decreases close toTP

and at the same time the damping increases. BelowTP one recovers the same response as
above, only with a slightly reduced structure factor. We find no indication for a change in
line-shape associated with a splitting of the TA response into phase and amplitude modes,
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(a)

(b)

Figure 13. (a) Constant-Q scans for (TaSe4)2I, at the L point (2, 2, 4.085) below and aboveTP

(TP = 253 K). The vertical scales are normalized using a factor proportional to the temperature,
to account for the effect of varying thermal population factors. Temperatures (in K):4: 300;
•: 285;�: 270; N: 230; ♦: 180;�: 100. (b) Constant-Q scans at the satellite position (the
A point in figure 2) above and belowTP in (TaSe4)2I (TP = 253 K). The vertical scales are
normalized using a factor proportional toT . Temperatures (in K):4: 300; •: 285; �: 270;
N: 230;♦: 180;�: 100;O: 50.

as would be expected for a purely displacive transition.
AC conductivity measurements belowTP reveal a sharp resonance at 30 GHz [47]

in nominally pure (TaSe4)2I. The frequency and width of the resonance are found to be
remarkably sensitive to dilute Nb doping. For a Nb concentration of 1.2%, the authors
of reference [47] find that the position of the resonance is shifted to 120 GHz and is
considerably broadened (110 GHz fwhm instead of the value 20 GHz obtained for the
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Figure 14. The temperature dependence of the TA phonon frequency and damping at the CDW
satellite position in (TaSe4)2I (TP = 253 K).

pure compound). This behaviour is consistent with the interpretation of the resonance as
a pinned CDW phason, for which the pinning frequency and linewidth are expected to
increase together with the concentration of pinning centres [48].

These results are difficult to reconcile with our data shown in figures 13(b) and 14. A
limited amount of phason–amplitudon decoupling may possibly be present in the neutron
spectra taken belowTP and may go undetected due to finite frequency and wavevector
resolution. This would also account for the apparent saturation of the phonon linewidth at
about 60 GHz in the low-temperature neutron spectra, far above the 20 GHz linewidth of
the σ(ω) resonance.

A more definite comparison between the two techniques could possibly be obtained
in the future using doped samples, for which resolution limitations would be less severe
in the neutron case. One should also keep in mind the fact that the reconstruction of the
phonon spectrum belowTP, in a system characterized by an order parameter withn = 8
components, such as (TaSe4)2I, is likely to be considerably more complex than the simple
phason–amplitudon decoupling observed in the standardn = 2 case. In fact, it is known
from previous work on biphenyl [49] and BaMnF4 [50] (n = 4) and on quartz [51, 52]
(n = 6), that the number of distinct excitation frequencies to be observed nearq = qs

(i.e. phasons, amplitudons and uncondensed soft modes) will depend on the single-q or
multiple-q nature of the modulated phase. Although the details have not been worked out
in then = 8 case, one expects all of these modes to be observablesimultaneouslyby means
of inelastic neutron scattering (for a large multi-domain sample), whereas only a subset
of these modes should be activated in theσ(ω) spectra. This may well account for the
difference in frequency and linewidth between the spectra obtained by the two techniques.

5. The strong-coupling model

The above measurements, together with previously reported structural and inelastic neutron
scattering results, provide a comprehensive picture of the Peierls instability in (TaSe4)2I on
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the basis of which we may now return to the question addressed in section 1 concerning
the nature of the electron–phonon coupling in this family of compounds.

Above TP, strongly correlated fluctuations are observed in (TaSe4)2I. At 270 K
(TP + 30 K), in-plane and in-chain correlation lengths extend up to 100Å and 180Å,
respectively. At the same relative temperature (240 K) the corresponding values for
(NbSe4)2I, determined by x-ray scattering [15], are around 35 and 50Å, respectively.
Part of the difference may be related to the longer wavelength of the modulation in the
Ta compound, resulting in a more pronounced ‘modulated strain’ character for the atomic
displacements involved.

In both cases, it seems highly unlikely that such 3D correlated fluctuations could reduce
TP by a factor 2 or 3 with respect to its mean-field value. This, as well as the large
amplitude of the modulated displacements, casts some doubt on the applicability of weak-
coupling theory to the cases of (TaSe4)2I and (NbSe4)2I.

In the preceding section we have attempted to characterize the low-energy excitations
at and around the wavevector of the incommensurate superstructure. The only hint of a
phase transition as far as the dynamics is concerned lies in the limited softening of the
acoustic phonon branch close toTP. We have not observed softening of any one of the
lower-frequency optical modes, in particular the TO mode of same polarization, as initially
proposed by Sugaiet al [28].

The softening of the acoustic phonon does not have a critical character. Critical
behaviour of the elastic (or unresolved quasi-elastic) central peak is observed: its intensity
and correlation lengths diverge on approachingTP. This leads us to view the Peierls
transition in (TaSe4)2I more as an ordering process than as a displacive-type instability.

Indeed, the existence of Peierls transitions with order–disorder dynamics has been
predicted by Aubry and co-workers [4, 5] in the context of strong-coupling theory. Beyond
a critical valuekc of the electron–phonon coupling parameterk, the ground state of the
interacting electron–phonon system cannot be calculated perturbatively, starting from the
unperturbed metallic state. This ‘non-analytical’ regime is characterized by the existence
of localized electronic states (bipolarons) strongly pinned to the lattice. However, this
bipolaronic state should not be confused with the bipolaronic regime referred to in the
context, for instance, of high-Tc superconductors [53]. In this latter case, the bipolarons are
isolated defects with small or negligible overlapping of the corresponding wavefunctions.
Aubry’s bipolarons form a dense ensemble which in the limitk→∞ gives rise to a bond
ordering wave. The normalized electronic eigenstate of the bipolaron is given by

9(x) = k

2
√

2

1

cosh(k2x/4)
(3)

where the parameterk is defined as

k = λ
√

2

tMω2
0

. (4)

ω0 andM are the constant frequencies and masses of identical oscillators located at each
lattice site,t is the electronic exchange coupling between neighbouring sites andλ is the
usual dimensionless electron–phonon coupling constant.

In such a picture, the energy scale corresponding to the Peierls gap 21(0) is the bipolaron
formation energy. This latter energy is closely related to the energy of pinning of a single
bipolaron to the lattice (the Peierls–Nabarro potentialEPN). The activated nature of the
electrical conductivity below as well as aboveTP (the ‘pseudo-gap’) is accounted for in
terms of bipolaron hopping. The Peierls transition corresponds to the ordering temperature
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of the bipolaronic fluid. The order of magnitude ofkBTP is fixed by bipolaron interaction
energies which, consistently, may be assumed to be much lower than the bipolaron formation
energy; hencekBTP� 21(0) (21(0) = 11.4kBTP for (TaSe4)2I).

In the strong-coupling limit, the dynamics associated with the Peierls transition is of
the Ising pseudo-spin type. The discrete Ising variable corresponds to the occupation
of a given lattice site by the centre of a bipolaron. The collective dynamics nearTP is
expected to be relaxational, with a characteristic microscopic relaxation time proportional
to exp{EPN/kBTP} and thus quite long on a phonon timescale. The same applies to the
CDW fluctuation spectrum belowTP.

The above predictions are in qualitative agreement with our experimental observations
for pure (TaSe4)2I. Concerning the effect of doping, however, one finds it difficult to
account for the strong influence of dilute isoelectronic impurities within a localized-electron
framework. The primary effect of adding 1.2% Nb impurities should be to localize the
conduction electron wavefunctions over chain segments with an average length of the order
of the average distance between impurities along a given chain (≈800 Å). If, however, the
electronic wavefunctions arealready localized over a much smaller distance, as implied in
Aubry’s strong-coupling picture, one would not expect impurities to play such a major role.

To summarize, the strong-coupling model may account for:

(i) the large ratio between the low-temperature Peierls gap 21(0) and the transition
temperatureTP;

(ii) the large amplitude (≈0.1 Å) of the low-temperature ionic modulation;
(iii) the order–disorder character of the pre-transitional fluctuations.

On the other hand it doesnot account for:

(i) the nearly isotropic character of the pre-transitional fluctuations;
(ii) the large ‘transverse acoustic’ component of the ionic modulation;
(iii) the strong influence of isoelectronic doping on the modulation periodicity.

In order to understand these latter aspects, which arespecificto the case of (TaSe4)2I,
one needs to take explicit account of the fact that, in this case, the Peierls instability is
a zone-centre (q ≈ 0) instability (see section 2). Thisspecificaspect of (TaSe4)2I (and
(NbSe4)2I) implies that the standard Fröhlich description of the interacting electron–phonon
system must be reformulated. Since conduction electrons are not expected to coupledirectly
to long-wavelength transverse acoustic modes, one must assume that they couple to specific
optical-like deformations which in turn interact with the long-wavelength acoustic degrees
of freedom. A proper description of the instability should therefore include the acoustic
variables as well as the electron-coupled optical variables. The low-temperature modulated
distortion, which is the end result of this two-stage interaction process, should have a mixed
optical–acoustic character, even though, experimentally, the acoustic component appears to
be dominant.

6. Strain coupling: a Landau–Ginzburg model

The object of this section is threefold:

(i) to identify the nature and symmetry of the optical variables which couple directly to
the conduction electron CDW;

(ii) to construct a free-energy functional expressed in terms of these optical variables as
well as the acoustic variables;
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(iii) to derive the characteristics of the CDW ground state by minimization of the free-
energy functional.

Following the band calculation of Gressieret al [23], we assume a quarter-filled Ta dz2

conduction band with strong one-dimensional character. The optical modes which couple to
the CDW fluctuations must then involve tetramerization-like deformations of the –Ta–Ta–
chains, with Ta displacements alongc [23]. The Se2− dimers which are covalently bonded
to the Ta ions are expected to readjust to the Ta displacements. However, because of the
weak interchain bonding, we may view these tetramerization modes asintrachain modes,
with only weak dispersion in the directions normal to the chains.

Far aboveTP, we thus expect a one-dimensional fluctuation regime, where CDW
fluctuations on adjacent chains are only weakly correlated. This regime should give rise
to a planar distribution of x-ray diffuse scattering, corresponding to integer values ofl

(Q = ha∗ +kb∗ + lc∗). One should note that, in practice, this regime may be quite difficult
to detect because of the highly anisotropic dispersion of the TA branch polarized alongc
(see section 4.1) which gives rise to a similar set of diffuse scattering sheets, also for integer
l-values.

As the temperature is lowered, transverse antiphase CDW correlations develop as a
result of interchain interactions and Coulomb interactions between fluctuating CDWs on
adjacent chains. As a result, the diffuse scattering intensity associated with the optical-
mode displacements should concentrate around crystallographic0 points (qs ≈ 0). In that
(3D) regime,gradient interaction terms between optical and acoustic degrees of freedom
become important. They give rise to two effects:

(i) the fluctuating displacements acquire a strong acoustic component which in the
present case appears to be dominant, at least below room temperature;

(ii) the critical fluctuations concentrate around positions (i.e. the satellite positions)
which are close to but distinct from the0 point.

In the present model, the values of the satellite wavevector components are not related to
the topology of the conduction electron Fermi surface. They are determined by the strength
of the gradient interaction terms. Similar phenomenological models have been developed in
the context of incommensurate long-wavelength-modulated dielectrics, such as quartz [54],
sodium nitrite and thiourea [55]. In these materials the incommensurate structure arises
from the presence of a pseudo-Lifshitz invariant involving an optical order parameter and
the elastic deformations. The present model is also related to the TA–TO coupled-mode
model of Sugaiet al [28], except that the TA and TO modes which are coupled here have
quite different polarizations and are not related via a zone-folding operation, as postulated
in [28].

Table 1. The character table for the 422 (D4) point group of (TaSe4)2I.

E(h1) C2x(h2) C2y(h3) C2z(h4) C2x̄y (h13) C4z(h14) C4z̄(h15) C2xy(h16)

(x, y, z) (x, ȳ, z̄) (x̄, y, z̄) (x̄, ȳ, z) (ȳ, x̄, z̄) (ȳ, x, z) (y, x̄, z) (y, x, z̄)

A1 1 1 1 1 1 1 1 1 x2 + y2, z2

A2 1 1̄ 1̄ 1 1̄ 1 1 1̄ z, Rz
B1 1 1 1 1 1̄ 1̄ 1̄ 1̄ x2 − y2

B2 1 1̄ 1̄ 1 1 1̄ 1̄ 1 xy

E

(
1 0
0 1

) (
0 1
1 0

) (
0 1̄
1̄ 0

) (
1̄ 0
0 1̄

) (
0 ī
i 0

) (
i 0
0 ī

) (
ī 0
0 i

) (
0 i
ī 0

)
(x, y)(Rx, Ry) (xz, yz)



5060 J E Lorenzo et al

Before continuing our discussion it is necessary to determine the symmetry of the
zone-centre mode involved in the Ta tetramerization. The site symmetry for Ta(1) atoms
(figure 1 in reference [17]) is orthorhombic 2(‖c)2(‖a)2(‖b) and the Ta(1)–Se near-neighbour
distances are 2.623̊A and 2.689Å. The site symmetry for Ta(2) atoms is also orthorhombic
2(‖c)2(‖(a+b))2(‖(a−b)) and the corresponding distances are 2.600Å and 2.713Å. The main
distinction between the two Ta sites comes from the iodine positions which are closer to
Ta(1) than to Ta(2)—leading to the+5 and+4 formal valence states, respectively.

For a Bravais group 422 (or D4) we have five irreducible representations (IR), four
one-dimensional (A1, A2, B1 and B2) representations and one bidimensional (E) one, whose
characters are presented in table 1. The decomposition of modes in IR is

7A1⊕ 9A2⊕ 7B1⊕ 7B2⊕ 18E.

Note that the IR decomposition in [42] is incorrect because it is based on four formula units
per unit cell, whereas theprimitive unit cell contains only two.

Figure 15. (TaSe4)2I: the metal-atom displacement pattern for different zone-centre irreducible
representations. Different types of Ta tetramerization are labelled as B1, B2, B1 + B2.

The Ta displacement vectors are shown in figure 15 and are as follows.

(i) In the A1 representation, none of the Ta atoms move.
(ii) In the A2 representation, Ta(1) and Ta(2) atoms move in opposite directions, and

dimers can be formed.
(iii) Only Ta(1) atoms move in the B1 representation, leading to the formation of Ta(2)–

Ta(1)–Ta(2) trimers and Ta(1) monomers.
(iv) Conversely, only Ta(2) atoms move in the B2 representation, leading to the formation

of Ta(1)–Ta(2)–Ta(1) trimers and Ta(2) monomers.
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(v) Finally, in the doubly degenerate E representation, the Ta(1) and Ta(2) motions are
confined to the basal plane.

It is easy to see that tetramers are obtained by combining B1 and B2 as shown at
the bottom of figure 15. Furthermore, one may verify that the resulting modulations on
neighbouring chains are ‘π -out-of-phase’. The peculiarity of the modes in this space group
is that B1 and B2 belong to the same IR of the ‘little group’ for wavevectorsq along c∗

and to different IR forq along high-symmetry directions in the basal plane (even and odd,
respectively, with respect to the C2x (or C2y) symmetry operations, and odd and even with
respect to C2xy (or C2x̄y)).

Table 2. The transformation table for the order parametersη1 andη2 and their gradients, and
for the shear elastic strains (e4, e5 and e6). Note from table 1 thate6 transforms asη2 and
e1 − e2 asη1.(

η2

e6

) (
η1

e1 − e2

)
e4 e5 x y z

C4z −η2 −η1 e5 −e4 −y x z

C2z η2 η1 −e4 −e5 −x −y z

C2x −η2 η1 e4 −e5 x −y −z
C2y −η2 η1 −e5 −e4 y x −z

As Ta(1) and Ta(2) sites are crystallographically very similar, one expects the B1 and
B2 eigenfrequencies to be nearly equal. In a Landau–Ginzburg free-energy expansion,
it is therefore necessary to include both types of displacement, i.e. the lowest-frequency
B1 mode (η1) and the lowest-frequency B2 mode (η2) as potential order parameters with
nearly degenerate moduli. Making use of table 2, we construct the second-order invariants
involving η1, η2 and their derivatives and the corresponding strain interaction terms.

The Landau free-energy density is written as a sum of all possible lowest-order
invariants:

F(r) = Fη(r)+ FE(r)+ FC(r) (5)

with

Fη = α1η
2
1 + α2η

2
2 + β1η

4
1 + β2η

4
2 + β3η

2
1η

2
2 + f

(
η2
∂η1

∂z
− η1

∂η2

∂z

)
+ τ11

[(
∂η1

∂x

)2

+
(
∂η1

∂y

)2
]
+ τ21

[(
∂η2

∂x

)2

+
(
∂η2

∂y

)2
]

+ τ12

(
∂η1

∂z

)2

+ τ22

(
∂η2

∂z

)2

(6a)

FE = 1

2
C11(e

2
1 + e2

2)+
1

2
C33e

2
3 + C12e1e2+ C13(e1+ e2)e3+ 1

2
C44(e

2
4 + e2

5)+
1

2
C66e

2
6

(6b)

FC = δ1η1(e1− e2)+ δ2η2e6+ γ1

(
e5
∂η1

∂y
+ e4

∂η1

∂x

)
+ γ2

(
e5
∂η2

∂x
− e4

∂η2

∂y

)
. (6c)

To discuss the stability of the modulated ground state, it is useful to introduce
the acoustic displacement vectoru(r) = (u1(r), u2(r), u3(r)) related to the elastic
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deformations through

e1 = u11 = ∂u1

∂x
e4 = u23 = 1

2

(
∂u2

∂z
+ ∂u3

∂y

)
e2 = u22 = ∂u2

∂y
e5 = u13 = 1

2

(
∂u1

∂z
+ ∂u3

∂x

)
e3 = u33 = ∂u3

∂z
e6 = u12 = 1

2

(
∂u1

∂y
+ ∂u2

∂x

)
.

(7)

We introduce the Fourier components of the variablesη1(r), η2(r) andu(r):

ηj (r) =
∑
q

ηjqeiq·r for j = 1, 2 andηj−q = η∗jq

uij (r) = εij + i

2

∑
q 6=0

(qiujq + qjuiq)eiq·r.
(8)

The thermodynamical potential is then given by

8 =
∫
F(r) dr = V

∑
q

8q. (9)

In order to simplify the expression for the potential8q, one must examine the values of
the relative phases of the complex variablesη1q , η2q anduq . These phases are determined
in first order by the following three coupling terms:

f

(
η2
∂η1

∂z
− η1

∂η2

∂z

)
→−iq3f (η

∗
1qη2q − η1qη

∗
2q) (10)

η1(e1− e2)→ i

2
η∗1q(q1u1q − q2u2q)− i

2
η1q(q1u

∗
1q − q2u

∗
2q) (11)

η2e6→ i

4
q1(η

∗
2qu2q − η2qu

∗
2q)+

i

4
q2(η

∗
2qu1q − η2qu

∗
1q). (12)

The first term induces a phase shift ofπ/2 between the variablesη1q and η2q . In what
follows, we choose the origin in such a way thatη1q is real:

η1q = η∗1q = η̄1. (13)

Equation (10) implies that the variableη2q is purely imaginary. If we assume real
values for the variablesu1q andu2q , we see that expression (11) vanishes. A finite value of
η2q will thus induce (see expression (12)) a modulated shear ofe6 type. In contrast, if the
variablesu1q andu2q are assumed to be imaginary, expression (12) vanishes and expression
(11) will induce a modulated shear ofe1− e2 type.

This latter solution corresponds to the actual experimental situation: the atomic
displacements in the CDW phase have a strong transverse acoustic component
q(1 1 0),u(1 1̄ 0), i.e. q1 = q2, u1q = −u2q . Therefore in what follows we assume
imaginary values for the variablesu1q andu2q . This choice is not strictly valid. Normally
the phases of the variablesη2q , u1q andu2q should be obtained through the simultaneous
minimization of the three coupling terms (expressions (10), (11), (12)). The corresponding
phase and displacement variables will then assume more general values. However, the
observed satellite intensities [25] suggest that the real atomic displacements are close to the
simplified solution that we consider here.

Within the above approximation we have

η∗2q = −η2q = iη̄2 u∗1q = −u1q = iū1 u∗2q = −u2q = iū2. (14)
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The three terms in equation (6c) become

η1(e1− e2)→ η̄1(q1ū1− q2ū2) (15)

e5
∂η1

∂y
+ e4

∂η1

∂x
→ 1

2
η̄1q1q2(u3q + u∗3q) (16)

e5
∂η2

∂x
− e4

∂η2

∂y
→ i

4
η̄2(q

2
1 − q2

2)(u3q − u∗3q)+
1

2
η̄2q3(q1ū1− q2ū2). (17)

The symmetry of the above expressions implies that|q1| = |q2| and |ū1| = |ū2|, and in
agreement with the experiment we chooseq1 = q2 = q and ū1 = −ū2 = u. The phase of
the variableu3q is then determined through equation (16):

u3q = u∗3q = u3. (18)

The thermodynamical potential8q consists of three terms:

8η
q = α1η̄

2
1 + α2η̄

2
2 + 2q3f η̄1η̄2+ q2

3(τ12η̄
2
1 + τ22η̄

2
2)+ 2q2(τ11η̄

2
1 + τ21η̄

2
2)+O(η4) (19)

8E
q = C11q

2u2+ 1

2
C33q

2
3u

2
3− C12q

2u2+ 1

4
C44(q

2u2
3+ q2

3u
2)+ 1

8
C66q

2u2 (20)

8C
q = 2δ1η̄1qu+ γ1η̄1q

2u3+ γ2η̄2q3qu. (21)

By minimizing8E
q +8C

q with respect tou andu3, we obtain the equilibrium values of
the acoustic displacements:

u = −4δ1η̄1q + 2γ2η̄2qq3

4Cq2+ C44q
2
3

u3 = − 2γ1η̄1q
2

2C33q
2
3 + C44q2

(22)

with C = C11− C12+ 1
8C66.

The contribution of theγ2-term is of higher order inq3 and thus can be neglected.
Whence

uq = − 4δ1η̄1

4C + C44ρ2
u3 = − 2γ1η̄1

2C33ρ2+ C44
with ρ = q3

q
. (23)

Inserting equation (23) in the expression for the potential, one gets

8q = ᾱ1η̄
2
1 + ᾱ2η̄

2
2 + 2q3f

′η̄1η̄2+O(η4)

ᾱ1 = α1+ τ12q
2
3 + 2τ11q

2− 4δ2
1

4C + C44ρ2
− γ 2

1 q
2

C44+ 2C33ρ2

ᾱ2 = α2+ τ22q
2
3 + 2τ21q

2

f ′ = f − 2δ1γ2

4C + C44ρ2
.

(24)

Minimizing 8q with respect toη̄1 and η̄2, one obtains the trivial solution̄η1 = η̄2 = 0
unlessᾱ1ᾱ2 = q2

3f
′2. To leading order in the variablesq andq3, this condition yields

α′1α2+ q2

{
2α′1τ21+ 2α2τ11− α2γ

2
1

C44+ 2C33ρ2

}
+ q2

3

{
α′1τ22+ α2τ12− f ′2

}
+ O(q4, q4

3) = 0 (25)

whereα′1 is the renormalized modulus associated with the variableη1:

α′1 = α1− 4δ2
1

4C + C44ρ2
. (26)



5064 J E Lorenzo et al

As a result of coupling to the elastic strains, the modulusᾱ1(q1, q3) acquires a non-
analytic character in the small-wavevector limit:

lim
(q→0;q3=0)

ᾱ1 = α1− δ2
1/C

lim
(q=0;q3→0)

ᾱ1 = α1.
(27)

We make the assumption, consistent with the strong acoustic character of the modulated
displacements, that the coupling coefficient,δ1, of the variableη1 and the straine1 − e2 is
large. In particular we expect the renormalization of theη1-modulus,α1, to be a large effect
which effectivelytriggers the instability. For the sake of definiteness, we may assume that
all of the coefficients appearing in the free energy (6) are temperature independent with
the exception ofδ1. If |δ1(T )| increases on cooling, the high-temperature phase becomes
unstable against ahomogeneousdistortion at a temperature such that

α′1(ρ = 0, T ) = α1− δ2
1(T )/C = 0. (28)

The important information contained in equation (25) is the fact that the instability
condition may be achieved while the leading term,α′1α2, is still weakly positive. For this
to occur, it is sufficient that the coefficient of theq2

3-term be negative:

α′1τ22+ α2τ12− f ′2 < 0. (29)

This guarantees that, on cooling, the instability will first be achieved for some finite value
of q3. Through theρ-dependence ofα′1, this will in turn entail the in-plane wavevector
componentq having a finite value. Although this is not essential, one may note that the
coefficient of theq2-term in equation (25) may itself be negative:

2α′1τ21+ 2α′2τ11− α2γ
2
1 /(C44+ 2C33ρ

2) < 0. (30)

The coefficientsτ11 andτ21 correspond to the in-plane dispersion coefficients for the tetra-
merization modes: due to the weakinterchain interactions, theseintrachain modes are
expected to be essentially dispersionless in thex–y plane (τ11 ≈ τ21 ≈ 0), in which case
condition (30) is readily fulfilled.

The equilibrium values of the modulation wavevector components (q, q, q3) may in
principle be obtained from the minimization of the lhs of equation (25) with respect to
q and q3. This procedure is however beyond the scope of the present work, since it
would involve writing down explicit expressions for the fourth- and higher-order terms in
equation (25), terms for which we have little experimental input. One may simply note
that the small values ofq andq3 found experimentally imply large, positive values for the
fourth-order coefficients. This is also consistent with the overall picture of the instability
as a ‘zone-centre’ Peierls transition (2kF = 0), for which the finite value of the modulation
wavevector arises from gradient interaction terms and through the (indirect) coupling of the
electronic variables to the elastic strains.

7. Discussion

The model presented above is incomplete and, clearly, oversimplified. It nevertheless
provides a plausible interpretation for a number of unusual aspects of the Peierls instability
in (TaSe4)2I.

(i) The transverse acoustic character of the modulated displacements belowTP is
explained via the bi-linear coupling between theη1 optical-mode distortion and thee1− e2

shear strain.
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(ii) The finite value of the in-plane CDW wavevector component is accounted for via
the same mechanism.

(iii) The finite value of the CDW wavevector component along the chains is accounted
for via a gradient interaction (‘pseudo-Lifshitz-invariant’) term for the two nearly degenerate
Ta-tetramerization modes.

(iv) In principle, the values of the CDW wavevector components could also be connected
to the Fermi surface nesting topology. The sensitivity of these values to dilute isoelectronic
doping is in that case difficult to rationalize. In the present model the equilibrium values
of q andq3 result from a balance between several competing free-energy terms. In such a
case a small change in one of the terms can have a large effect. For instance, the inclusion
of ≈1% Nb impurities may affect the long-wavelength dispersion of the tetramerization
modes (via changes in the electron–phonon coupling strength) and/or the strength of their
interaction with the elastic strains.

On the other hand, the model in its present state is not sufficiently refined for predicting
the equilibrium values of the CDW wavevector components. An even more difficult task
would be to reproduce the temperature evolution of these components and to predict the
occurrence or non-occurrence of a low-temperature commensurate phase withq = q3 = 0.
Experimentally,q andq3 are found to be temperature independent, within the accuracy of
the measurements, and no lock-in phase is observed. It is not clear however whether or not
such a simple behaviour can be reproduced within the present framework.

A more basic objection to the present model has to do with the fact that the Ta-
tetramerization modes have not been identified experimentally so far. Although both
modes should be observable by means of Raman and inelastic neutron scattering, the
eigenfrequencies associated with the moduliα1 andα2:

ω1,2 = (2α1,2)
1/2 (T > TP) (31)

are still unknown. In the remainder of this section we shall examine this point in more
detail.

The B1 and B2 modes are Raman active in(a, a) and (a, b) polarization, respectively.
From the data of Sugaiet al [28], the lowest-frequency modes are located at about 70 cm−1

(≈2 THz), in both geometries. None of them, however, exhibits any marked temperature
dependence. This is in fact a general feature of the Raman spectra for (TaSe4)2I: even
the 93 cm−1 mode observed in(c, c) geometry, which the authors of reference [28]
tentatively identify as the CDW-coupled optical mode, only shows a minute frequency
shift at aroundTP.

In the framework of the present model one does not expect the temperature renorm-
alization of theη1-modulus to be observable by means of Raman or inelastic neutron
scattering. The reason is twofold.

(i) The relationship (31) between modulus and eigenfrequency holds only in the
displacive limit. In the general case,α1 and α2 have the dimensions of inverse static
susceptibilities associated with the variablesη1 and η2. Through the Kramers–Krönig
and fluctuation-dissipation theorems,α1 and α2 are related to the frequency-integrated
response of the variablesη1 and η2. In the order–disorder limit the important part of the
response is relaxational and corresponds to processes of correlated jump diffusion between
equivalent configurations or potential wells. The phonon frequency in that case is only
the high-frequency part of the response, corresponding to oscillations around a particular
configuration or potential well. It is relatively insensitive to the temperature-dependent
ordering process associated with the phase transition.
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(ii) Even if the high-temperature dynamical response of the variableη1 is strictly phonon-
like, the renormalization ofα1 due to the coupling to the elastic strains (equation (26)) will
give rise to order–disorder dynamics. The reason for this is simply that theη1-fluctuations
occur on a very short timescale (in the THz range) while strain fluctuations are slow. In
an inelastic scattering experiment therefore, theη1-vibration will be elastically clamped and
occur at the ‘bare’ frequency (2α1)

1/2. In that case nothing distinguishes theη1-mode from
an ordinary optical mode.

The above remarks apply directly to Raman scattering and, in the long-wavelength limit,
to inelastic neutron scattering as well. In the case of neutron scattering one should also
take into account the fact that most of the experiments have been carried out near strong
Bragg reflections of the type (h k l) with h+ k = 2n. This is also where the strong satellite
reflections are observed. One can readily show that the Ta-tetramerization modes are extinct
nearh+ k = 2n. In practice they may still be observable because of the accompanying Se
displacements, but probably only weakly so.

8. Conclusions

In this paper we have studied the Peierls phase transition in the quasi-one-dimensional
charge-density-wave compound (TaSe4)2I by elastic and inelastic neutron scattering
techniques. Our elastic neutron scattering experiments have shown that this compound
exhibits different features to the rest of the known materials undergoing Peierls transitions:
nearly isotropic correlation lengths for the fluctuations aboveTP, acoustic-like character of
the corresponding atomic displacements and variation of the incommensurate wavevector
on doping with isoelectronic impurities (Nb). We have shown that we can understand
most of these features within the framework of a semi-phenomenological Landau–Ginzburg
model. A strong coupling between the conduction electrons and the Ta-tetramerization
mode, together with a temperature-dependent coupling between the latter modes and the
elastic strains, may lie at the origin of the phase transition in this compound.

The results from our inelastic neutron scattering experiments have shown the absence
of a clear soft-phonon-mode behaviour at the phase transition and the presence of a central
peak whose intensity diverges atTP. This indicates that the phase transition in (TaSe4)2I falls
in the class of order–disorder transitions, as predicted by strong-coupling theories [4, 5].
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